
Performance Optimization of
Quantum Espresso on KNL

tbarnes@lbl.gov
NERSC
November 3 2016

Taylor Barnes, Thorsten Kurth, Paul Kent, Pierre
Carrier, Nathan Wichmann, David Prendergast,
Jack Deslippe

Introduction

Approximate exchange functional Exact exchange operator

Local DFT: Hybrid DFT:

Cost of Hybrid DFT

Goal: Prepare QE for large-scale
execution on the KNL architecture, with
a particular focus on improving the
implementation of hybrid exchange

0

200

400

600

800

1000

1200

PBE PBE0

W
al

lti
m

e
(s

)

Local DFT Hybrid DFT

Total walltime for an SCF
calculation on 16 waters:

NERSC Whitebox, Quad Cache Mode;
Intel 17.0.042 Compiler:

Threads

Original OpenMP Threading

Increasing the amount of work
performed in each OMP loop
dramatically reduces overhead
costs.

NERSC Whitebox, Quad Cache Mode;
Intel 17.0.042 Compiler:

Threads

Improved OpenMP Threading

Flat Mode

With the original code, running KNL in Cache mode is approximately
2x faster than Flat mode. Using FASTMEM directives enables Flat
mode to outperform Cache mode.

KNL NUMA Mode Performance

Using the improved OpenMP code is the fastest way to run on KNL, and is
about 1.6x faster than the best Haswell walltimes. OMP is significantly
improved on both Haswell and KNL.

KNL vs. Haswell

Strong scaling of QE on Ivy Bridge, using pure MPI mode:

Strong Scaling of QE

FFT-1[ψi(g)]

Calculate ck(g)

v(g) = ck(g) ρij(g) FFT-1[v(g)]

FFT[ρij(r)]

FFT[Hψi(r)]

Reduce
Hψi(r)

Local
Potential

Update ψ

Broadcast ψ(g) SCF
Loop

(duplicated on
each bgrp) Loop i

(duplicated on
each bgrp)

Hψi(r) += v(r) ψj(r)

Loop j
(bgrp parallelized)

ρij(r) = ψi(r) ψj(r)

Loop k

Overview of Existing Code

FFT-1[ψi(g)]

v(g) = ck(g) ρij(g) FFT-1[v(g)]

FFT[ρij(r)]

Local
Potential

Update ψ

Broadcast ψ(g) SCF
Loop

(duplicated on
each bgrp)

Hψi(r) += v(r) ψj(r)

Loop j
(bgrp parallelized)

ρij(r) = ψi(r) ψj(r)

Loop k

FFT[Hψi(r)]

Reduce
Hψi(g)

Re-use ck(g)

Loop i
(bgrp parallelized)

Pair Parallelization

Strong scaling of the exact exchange part of the code on Ivy Bridge, with 1
band group per node:

Parallelization over band pairs both improves the strong scaling of the code
and also improves the load balancing.

Pair Parallelization Performance

FFT-1[ψi(g)]

v(g) = ck(g) ρij(g) FFT-1[v(g)]

FFT[ρij(r)]

Local
Potential

Update ψ

Broadcast ψ(g) SCF
Loop

(duplicated on
each bgrp)

Hψi(r) += v(r) ψj(r)

Loop j
(bgrp parallelized)

ρij(r) = ψi(r) ψj(r)

Loop k

FFT[Hψi(r)]

Reduce
Hψi(g)

Re-use ck(g)

Loop i
(bgrp parallelized)

Code Overview

Fraction of total walltime spent in local regions of the code, using 1 band
group per node on Haswell:

Unintuitively, local regions of the code dominate the cost of the calculation
when using large numbers of nodes. This is because the local regions of the
code a run in serial with respect to band groups.

Cost of the Local Calculation

Independent Parallelization of the
Local Code

Node 1

Band 1

Data structure of Ψ(g), in
local code:

Band 2

Band 3

Band 4

Band 5

Band 6

g5 g2 g4 g6 g1 g3

Node 1

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

g1 g2 g3 g4 g5 g6

Node 2 Node 3

Data structure of Ψ(g), in
exact exchange code:

Node 2

Node 3

Enabling parallelization of the local regions of the code across band groups requires
on-the-fly transformation of the data structures between local and exact exchange
regions of the code.

Full Calculation Exact Exchange Part
Strong scaling on Ivy Bridge, with 1 band group per node:

Improved Strong Scaling

Thank You

Taylor Barnes, NERSC, November 2016 - 15

